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SUM MARY 
A new characteristic-based method for the solution of the 2D laminar incompressible Navier-Stokes 
equations is presented. For coupling the continuity and momentum equations, the artificial compressibility 
formulation is employed. The primitives variables (pressure and velocity components) are defined as 
functions of their values on the characteristics. The primitives variables on the characteristics are calculated 
by an upwind differencing scheme based on the sign of the local eigenvalue of the Jacobian matrix of the 
convective fluxes. The upwind scheme uses interpolation formulae of third-order accuracy. The time 
discretization is obtained by the explicit Runge-Kutta method. Validation of the characteristic-based 
method is performed on two different cases: the flow in a simple cascade and the flow over a backward- 
facing step. 

KEY WORDS Incompressible flows Navier-Stokes equations Riemann solver Artificial compressibility 

1. INTRODUCTION 

The development of solution methodologies for the unsteady incompressible Navier-Stokes 
equations has received considerable attention in the past. The solution of incompressible flows 
in primitive variables involves the difficulty of coupling the changes in the velocity field with 
the changes in the pressure field while at the same time satisfying the continuity. For 
two-dimensional flows the streamfunction-vorticity formulation can be used as an alternative, 
but this is less effective in three dimensions and other methods have to be used. Most methods 
using primitive variables can be classified into two broad categories. 

The first of these is the pressure Poisson method first introduced by Harlow and Welch.' In 
this method a Poisson equation or a specially formulated 'correction' equation which is formed 
from the momentum equations is solved for the pressure at each iteration such that the continuity 
equation will be satisfied at the next iteration.lP3 In this procedure the momentum equations 
are used for the velocity field. The second category is that of artificial compressibility. This 
method was first introduced by Chorin4 in obtaining steady state solutions. In the artificial 
compressibility (or pseudocompressibility) formulation a time derivative of the pressure is added 
to the continuity equation and therefore a coupling of the pressure and velocity is obtained. 
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During recent years several authors have used the artifical compressibility formulation in 
computing steady and unsteady incompressible 

The artificial compressibility formulation transforms the incompressible Euler equations to a 
totally hyperbolic system, and therefore numerical methods which have initially been developed 
for the compressible Euler and Navier-Stokes can be extended to incompressible flows. In the 
past flux-difference-splitting methods for incompressible flows have been developed by Hartwich 
et al.," Rogers and K ~ a k ' ' , ' ~  and Kwak et aL9 Merkle and Athavale" have also developed 
an upwind differencing method for unsteady incompressible flows, while Dick and Linden l4 

have developed flux difference splitting for the steady incompressible equations. Furthermore, 
prediction of incompressible flows by the approximate factorization technique has also been 
pre~ented . '~  Besides the above categories, the penalty method,16 which has mainly been used 
in the finite element community, has to be reported. In this method a pressure term instead of 
a time derivative of pressure is added to the continuity equation. A combination of the penalty 
and pseudocompressibility methods for solving the Navier-Stokes equations has also been 
proposed. 

The objective of this work is to present a characteristic-based method which exploits the 
hyperbolic properties of the incompressible inviscid equations as they are introduced in the 
artificial compressibility formulation. In the past Eberle' has developed a characteristic 
flux-averaging scheme for an ideal gas and this method has since been reformulated for real gas 
problems by other  author^.'^*^^ In the present work a new characteristic-based method is 
developed for the incompressible Navier-Stokes equations. The motivation for the present work 
originates from previous experience of successful implementation of characteristic flux averaging 
in compressible flows. 

The present method defines the primitives variables as functions of their corresponding values 
on the characteristics. Consequently, the values on the characteristics are calculated by an 
upwind differencing scheme based on the sign of the local eigenvalue of the Jacobian matrix of 
the convective fluxes. The Navier-Stokes terms are discretized by an 'upwind'-type scheme,2' 
while the time integration is obtained by a multistage Runge-Kutta ~ c h e m e . ~ ~ . ~ ~  Validation of 
the Navier-Stokes solver is presented for the separated laminar flow in a cascade of circular 
aerofoils and for the flow over a backward-facing step, where experimental results were available. 

2. GOVERNING EQUATIONS AND ARTIFICIAL COMPRESSIBILITY 

The unsteady flow of an incompressible fluid is governed by the Navier-Stokes equations written 
in tensor notation as 

aui 
axi 
- = 0, 

(1b) 

where t is time, x i  ( i  = 1,2) are Cartesian co-ordinates, u, are the corresponding velocity 
components, p is the pressure and T~~ is the viscous stress tensor. 

The above system of equations can be modified by introducing the artificial compressibility 
concept4 through a time derivative of pressure in the continuity equation (la): 

aui al4.u. dp + ftij -+LJ- - -- 
at a x j  a x ,  a x j '  

1 a p  aui 

p at axi  
~- +--0. 
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For incompressible flows equations ( 2 )  and ( lb)  can be considered using as primitive variables 
the pressure and velocity components. The parameter f i  is the artificial compressibility and is 
to be chosen to ensure the fastest convergence to the steady state. If a transient solution were 
desired, /I would have to be chosen large. In the present work steady state solutions are 
considered and therefore the value of /? has to be selected to enhance convergence. 

The Navier-Stokes equations with the artificial compressibility term added can be expressed 
in generalized co-ordinates t = ( ( x ,  z) and { = { ( x ,  z) and dimensionless form by the vector 
system 

where Re is the Reynolds number and U is the unknown solution vector 

The inviscid flux vectors Einv and Ginv and the viscous ones Evis and Gvis can be written by 
superposition of the Cartesian inviscid (E, G) and viscous (I?, 3) fluxes respectively as 

where 

E = (u, u2 + p ,  uw)', 

e = (w, uw, w2 + p)T, 

= (03 7xx, T x J T ,  

3 = (0, TZX, TZ2)* .  

The indices x and z denote partial derivatives, except for the stresses T,~, T ~ ~ ,  and T ~ ~ .  The stresses 
are defined as 

7x2 = T z x  = (w, + uz), 

T r z  = -&4, - 2wz). 

(7b) 

(74 

Finally, u and w are the velocity components in the directions x and z respectively and 
J = xCzc - xSzF is the Jacobian of the transformation 5 = <(x, z), { = {(x, z) from Cartesian to 
generalized co-ordinates. 
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3. CHARACTERISTIC-BASED METHOD 

Neglecting the viscous terms from the Navier-Stokes equations (3), the incompressible Euler 
equations are obtained as 

The objective of the present work is to develop a numerical method which exploits the hyperbolic 
properties of the above system of equations. For this purpose a characteristic-based method (or 
a local Riemann solver) will be examined in the next paragraphs. This method is used for the 
discretization of the convective part of the Navier-Stokes equations. 

The Euler equations can be written in discretized form using a finite volume scheme. All 
quantities are considered to be located at the centre of the corresponding cell. In two dimensions 
this can be done by considering a volume (i, k) (Figure 1) with cell faces (i + f, k) and ( i  - f, k) 
in the (-direction and (i, k + 4) and ( i ,  k - $) in the (-direction. 

Using the finite volume concept, the Euler equations are written as 

In order to analyse the Euler equations, a simpler form than equation (8) can be chosen. This 
can be done by splitting the Euler equations into two one-dimensional equations 

and 

. 

Figure 1. A finite volume (i, k) with its cell faces 
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Figure 2. Schematic representation of the characteristic scheme 

We will present the analysis of the method for equation (10a). This equation can be used for 
the development of the local Riemann solution in the t-direction. Similarly equation (lob) can 
be analysed, resulting in a local Riemann solution in the [-direction. 

The non-conservative form of equation (10a) is 

Jut + U & L  + wtz) + U(U<<* + w < r 3  + P&* = 09 

Jw, + w&4, + W t , )  + w(u,rx + w , t z )  + P < L  = 0, 

(1 Ib) 

(114 

In the last system of equations the space derivatives are usually calculated by the initial data 
at time level n. In order to obtain time integration of equations ( l l ) ,  the update values of the 
vector U = (p /B ,  u, w)' at time level n + 1 can be defined by a linear Taylor series expansion 
around the known previous time level (Figure 2). 

A backward Taylor series expansion can be such that the vector U is to be defined as a 
function of the Uj-values which are inside the limits of a stable i n t e g r a t i ~ n . ~ ~  This leads to the 
definition 

u - u .  A t  U = U j  -I- AtU, -I- UAt or U = - U ,  -, 
At At 

where (.) = a/&. The interval A t  can be defined by introducing a wave speed such that 

A t  = 4At 

and subsequently the line with the slope l / t  is the characteristic. 
If we consider a dimensional analysis, we find that the term 4 is not really a physical speed, 

because ( is dimensionless and therefore 4 is an inverse time. Following Reference 24, in order 
to enter a physical wave speed with a proper dimension, the wave speed A is introduced via 

Jcrf + r 3  ( = A .  
J 

Therefore equation (12) yields 

. u - u j  J(C + (3  u = ~ - u,1 
At J 
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By substitution of equation (13) into equations (1 1) the following equations are obtained: 

where 

The spatial derivatives of ug, w,, and p,: can be eliminated from the above three equations 
following the method of Riemann.25 Similar consideration has also been given by EberleZ4 for 
the compressible Euler equations. This consideration is the following. Because at each time the 
system of equations is zero, it can be multiplied by an arbitrary coefficient, and after the 
summation of the three equations the resulting equation will also be zero. This procedure yields 
the equation 

+ UJUZ + b(& - I + u?) + C W ~ ]  + W J U Z  + bu.? + c(& - 2 + w Z ) ]  = 0, (15) 

where a, b and c are the coefficients that multiply equations (14a), (14b) and (14c) respectively. 
If we define the coefficients of the partial space derivatives to be zero, an ordinary difference 
equation will be obtained: 

a 
~ ( p  - p j )  + b(u - Uj) + c(w - W j )  = 0, 
P (16) 

with 

A 
- U  - + b f  + CZ = 0, ( 174 B 

U? + b(& - I + u?) + CW? = 0, 

U? + buI + c ( I O  - A + w?) = 0. 

By solving the last three equations, the coefficients a, b and c can be determined. A non-trivial 
solution is defined for each of the eigenvalues of the above system: 

(184 

(W 
(W 

Lo = u f  + wz, 

2, = 10 + JcG + Bh 
I 2  = 10 - Jcni + 8). 
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For 1 = I .  equations (17) give 

b2 + cZ 
8. a=- 

10  

673 

By substitution of the last equation into equation (16) we find 

bCZ(P - Po)  + - U 0 ) l  + cCZ(p - Po) + &(w - wo)] = 0, 

where the subscript ‘0’ denotes that this equation corresponds to the zeroth eigenvalue. The last 
equation must be satisfied regardless of the values of the coefficients b and c. Therefore the terms 
in square brackets must be zero and the following equation is obtained: 

(u - uo)I - (w  - wo)3 = 0. (19) 

Similarly for the eigenvalues I, and Iz the following equations are obtained: 

(P - P A  + M 3 ( u  - u , )  + ?(w - w , ) ]  = 0, (20) 

( p  - p 2 )  + &[2(u - u2) + i ( w  - wz)] = 0. (21) 

The values p j ,  uj  and w j  with j = 0, 1,2 are the values of the primitive variables on the three 
characteristics. Equations (19H21) are the three characteristic equations (or Riemann invariants). 
The solution of these equations gives the primitive variables p ,  u and w as functions of their 
characteristic values: 

where 

k, = p1 + L1(ulf + w , q ,  

kz = p z  + A2(~z2 + w 2 3 .  

(23b) 

(234 

For the calculation of the inviscid flux Einv on the cell face of the computational volume the 
values of the pressure and velocities from equations (22) are used. 

The characteristic values pi, uj and w j  withj = 0, 1,2 are defined by upwind differencing from 
the left or the right side of the cell face according to the sign of the eigenvalues: 

U i +  1,2 = ;[(I + sign Aj)V - + (1 - sign I j ) U  +], (24) 

where Uj, 1,2 is a vector containing the characteristic values for each j = 0, 1,2. U - and U +  
are the values of the characteristics variables from the left and the right side of the control 
volume respectively. 
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In order to increase the accuracy of the scheme, a third-order interpolation formula is 
employed according to Reference 19: 

These interpolation formulae have also been used in the past for the solution of the compressible 
Euler and Navier-Stokes equations, providing satisfactory accuracy and convergence prop- 
erties.’ 

The analysis of the method was shown in this section for the inviscid flux Einv. The construction 
of the characteristic-based method for the flux Ginv can be obtained in a similar way. 

The solution of the Navier-Stokes equations requires also the discretization of the viscous 
terms. For this purpose an ‘upwind’-type scheme for the cross-derivatives of the viscous fluxes 
and central discretization for the second-order derivatives were adopted.21*26 The same scheme 
has been used successfully in the past for subsonic and supersonic flows. 

4. TIME INTEGRATION OF THE INCOMPRESSIBLE EQUATIONS 

For the time integration of the Navier-Stokes equations the explicit fourth-order Runge-Kutta 
time-stepping method was employed. The Runge-Kutta time-stepping m e t h ~ d ~ ~ . ~ ~  can be 
written as 

At 

6 
U n + l  = U n  - -[R(U)(l) + 2R(U)(’) + 2R(U)(3) + R(U)‘4’], 

where 

For faster convergence to the steady state solution a local time stepping At is used: 

j = 0, 1, 2, 
CFL 

max(Aj)’ 
At = ~ 

where CFL is the Courant-Friedrichs-Lewy number. The bound values of CFL are discussed 
in the numerical calculation of the next section. 
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5. VALIDATION OF THE NAVIER-STOKES ALGORITHM 

5.1. Flow in a cascade of circular aerofoils 

The presented numerical method is first applied to the case of the steady state flow in a cascade 
formed by circular arc aerofoils as shown in Figure 3(a); the thickness-to-chord ratio is equal 
to 0.2 and the pitch-to-chord ratio is equal to 2.0. In Figure 3(b) the applied 60 x 30 grid is 
shown formed in the lower half of the symmetric blade-to-blade passage. The imposed boundary 
conditions are as follows. 

(i) For the inlet section AB: 

u = constant, w = 0, a p p x  = 0. 

Circular arc-cascade 

Tangency c o n d i t i o n  

- 7  -------A- r 
u , w I 1 p s p e c r f r e d  

I 

z t  

c o n d i  t . ion c z n c i t i o n  

(a) 

Y A 

B grid : 60x30 

A E F 

C 

D 

(b) 
Figure 3. Geometry of circular arc cascade with boundary conditions and grid 
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Figure 4. Effect of CFL on convergence history for Re = 100 

(ii) For the outlet section CD: 

auldx  = 0, awlax = 0, p = prescribed. 

(iii) For the upper limit BC (plane of symmetry): 

(iv) For the lower limit AEFD: 

10 

B a ul 

10 
0 

4 
10 

10 

PRESSURE 1 
- cn-0.8 

0 10000 20000 

- CFL=O.8 - cn-0.8 

10 -J 10 

10 + 10 + 

10 4 10 -¶ 

00 0 10000 20000 
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Figure 5. EiTect of CFL on convergence history for Re = loo0 
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0.1 0.3 

Figure 6. Velocity contours for cascade flow at Re = 100 

Figure 7. Pressure coefficient contours for cascade flow at Re = 100 

0.1 

Figure 8. Velocity contours for cascade flow at Re = lo00 

(a) on the sections AE and FD (plane of symmetry) 

auldz  = 0, w = 0, a p l a z  = 0;  

(b) on the aerofoil section EF 

w = 0, u = 0, p defined by characteristic values p ,  and p 2 .  

For the third-order upwind differencing schemes fictitious cells on the solid surface are 
considered. The values in these cells are estimated by extrapolation of the values in the inner 
flow field. 
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E 

Figure 9. Pressure coefficient contours for cascade flow at Re = lo00 

No slip conditions I 
I 
I 
I Exit : p 

H = l O . l r n r n  I specified 
I 
I 
I 

In all cases convergence is considered to be attained when the normalized residual of all 
quantities becomes less than 1 x The numerical method is applied to two values of the 
Reynolds number, Re = 100 and lo00 (Re = uD/v,  where u is the velocity at the inlet section 
AB, v is the kinematic viscosity of the fluid and D is half the chord ratio), and for several values 
of the parameter of artificial compressibility. It is proved that the best convergence rate is 
obtained with /3 = 1. 

The effect of the CFL-value on the convergence rate is shown in Figures 4 and 5 for Re = 100 
and lo00 respectively. From these figures it is evident that the fastest convergence is achieved 
with CFL = 0.6 and 0 8  for Re = 100 and too0 respectively. 

In Figures 6 and 7 the obtained normalized pressure (taking as reference the stagnation 
pressure at the leading edge) and iso-velocity contours are shown for Re = 100. In Figures 8 
and 9 the same results are shown for Re = 1OOO. 

5.2. Flow over a backward-facing step 

Validation of the method was obtained by comparing with experimental results for the flow 
over a backward-facing step. The configuration of the backward-facing step is shown in Figure 
10. The applied boundary conditions are as follows. 

(i) Inlet section AB at x = 0: 

u measured profile, w = 0, aplax = 0. 
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Figure 11. Effect of CFL on convergence history for Re = 100 and 75 x 20 grid 

- 
VELOCITY, v PRESSURE 

- CFL=O.B 

I I 1 I 
0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 

NUMBER OF TIME STEPS 

Figure 12. Effect of CFL on convergence history for Re = 389 and 75 x 20 grid 

Outlet section C D  at x = L = 60s: 

au/ax = 0, a w p x  = 0, p prescribed. 
Solid surfaces: 
(a) sections ED and BC 

u = 0, w = 0, p defined by characteristic values p I  and p 2 ;  
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0 0 0 0 0 Experimental results 
U(cm/s) - Current results 

0 (02030 

x/S= 0.0 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.76 12.04 16.33 20.92 

Figure 13. Present computed and experimental velocity profiles for Re = 100, C F L  = 0.8 and 75 x 20 grid at different 
x/S locations 

0 0 0 0 0 Experimental results - Current results 

x/S= 0.0 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.14 7.76 8.52 9.18 9.74 11.0711.84 

Figure 14. Present computed and experimental velocity profiles for Re = 389, CFL = 06 and 75 x 20 grid at different 
x/S locations 

(b) section AE 

u = 0, w = 0, p as above. 

The obtained numerical results are compared with measurements in the case of Re = 100 and 
389. Here the Reynolds number is defined as Re = V D / v ,  where Y is equal to two-thirds of the 
measured maximum velocity at the inlet section AB, D is the hydraulic diameter of the inlet 
(D = 2h) and v is the kinematic viscosity of the fluid. 

The convergence histories for various CFL-values for Re = 100 and 389 are shown in Figures 
11 and 12 respectively. For these cases a grid of 75 x 20 was used. As in the previous case, the 
convergence becomes faster as CFL increases. By additional calculations it has been proved that 
the best convergence rate is obtained with fl = 1. 

In Figures 13 and 14 the u-velocity profiles are compared with the measured ones for Re = 100 
and 389 respectively. The comparison is very good in all sections for both cases (Re = 100 and 
389). 

The dependence of the obtained numerical results on the grid density has also been studied. 
The convergence histories for CFL = 0.60, fl = 1, Re = 389 and three different grids are shown 
in Figure 15. As expected, the convergence becomes faster as the grid becomes coarser. As far 
as the u-velocity profiles are concerned, it can be observed from Figure 16 that the numerical 
results obtained with the 75 x 20 and 150 x 40 grids are identical and therefore in excellent 
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3 
MLOCIlY, u mocm, v 10 -’ PRESSURE 

NUMBER OF TIME STEPS 
Figure 15. Effect of grid size on convergence history for Re = 389 and CFL = 0.6 

* * * n o  75 x 20 grid 
150 x 90 grid - 

x/S= 0.0 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.14 7.76 8.52 9.18 9.74 11.0711.84 

75 x 20 grid 
o o * - -  45 x 15 grid 
- 

x/S- 0.0 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.14 7.76 8.52 9.18 9.74 11.0711.84 

Figure 16. Efiect of grid size on computed results for Re = 389 and CFL = 0.6 
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o o * * -  7 5  x 20 grid - 150 x 40  grid u(cm/a) 
0 102030 

x/S- 0.0 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.76 12.04 16.33 20.92 

- 75 x 20 grid 
- 0 - 0 -  4 5  x 15 grid 

0 ;  , , I 

x/S= 0.0 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.76 12.04 18.33 20.92 

Figure 17. Effect of grid size on computed results for Re = 100 and CFL= 0.8 

0 “1IIYYyyyyyyy 
x/S- 0.0 2.55 3.06 3.57 4.16 4.80 5.41 6.12 7.76 12.04 16.33 20.92 

L = 6 O S  
. 0 0 . .  L = 20 s 
- 

u(cm/4 
0 102050 

x/S- 0.0 2.55 3.06 3.57 4.16 4.80 5.41 6.12 7.76 12.04 10.33 20.92 

Figure 18. Effect of downstream boundary location on computed results for Re = 100 and CFL= 0.8 
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Table 1. Numbers of iterations for different grids 

Grid R e =  100 Re = 389 

45 x 15 3920 3440 
75 x 20 7040 5820 

150 x 40 11640 19720 

x/S= 0.0 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.14 7.76 8.52 9.18 9.74 11.0711.84 

x/S- 0.0 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.14 7.76 8.52 9.18 9.74 11.0711.84 

Figure 19. Effect of downstream boundary location on computed results for Re = 389 and CFL = 0.6 

agreement with the measured profiles. The results obtained with the coarse grid of 45 x 15 points 
exhibit small deviations from the measured values. In the case of Re = 100 (Figure 17) the 
numerical results are identical for the three different grids examined. The numbers of iterations 
for each case are given in Table I. 

The effect of the distance L between the inlet and the outlet section (Figure 10) on the obtained 
results is also examined. In Figures 18 and 19 for Re = 100 and 389 respectively the u-velocity 
profiles are shown for three different values of L, namely L= 20S, 30s and 60s. In all cases the 
effect of the distance L on the obtained results is negligible. 

Finally, it should be mentioned that a mesh-sequencing schernelg was used for the case of the 
backward-facing step and Re = 389. Using three successive grids (20 x 6, 39 x 11, 77 x 21), a 
reduction of 48% in the run time was reached in comparison with the run time without the 
application of the mesh-sequencing scheme. 
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6 .  CONCLUSIONS 

The objective of the present work was to develop a new numerical method for the solution of 
the incompressible Navier-Stokes equations. This method is used for the discretization of the 
convective fluxes of the Navier-Stokes equations and is based on a characteristic flux averaging 
of the inviscid fluxes according to the sign of the local eigenvalue. The present characteristic 
method is the extension to incompressible flows of a local Riemann solver presented in the past 
for the solution of inviscid and viscous compressible equations. The formulation of the method 
was examined and validation was presented for different flow cases, comparing also with 
experimental results. 

Using the artificial compressibility formulation, a hyperbolic set of equations for the inviscid 
incompressible case is derived. By exploiting the hyperbolic properties of this system of equations, 
simple formulae for the definition of the primitive variables at the cell face of the computational 
volume can be derived. These formulae define the primitive variables as functions of their 
corresponding values on the characteristics. The computational results proved that the character- 
istic-based method provides high accuracy. For the time integration an explicit Runge-Kutta 
scheme was used. The numerical scheme is stable for the flow cases studied here and allows the 
use of CFL-values up to 0.8. A reduction of the number of iterations is expected from an implicit 
formulation of the characteristic-based method. Extension of the method to turbulent flows will 
also be a subject of future research. 
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